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ABSTRACT

A rational map ¢: Py - P} is defined by homogeneous polynomials of a common
degree d. In [4, 9], the authors have established some bounds in terms of d for the
number of (m — 1)-dimensional fibers of ¢. An interesting question is whether the
number of points in P} with one-dimensional fibers under a rational map ¢: Pz -
P} can be arbitrarily large. In this paper, we show that the number of one-
dimensional fibers can reach the bound 2d — 2, thereby proving the sharpness of

previously known estimates.
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1. INTRODUCTION

Let k be a field and ¢:Py' > Py be a rational map. Such a map ¢ is defined by
homogeneous polynomials fy, ..., f, of the same degree d in the standard graded
polynomial ring R = k[Xy, ..., X;, ], satistying gcd(fy, ..., f,) = 1. Theideal I of R generated
by these polynomials is called the base ideal of ¢. The subscheme B : = Proj(R/I) c P}' is
called the base locus of ¢. Let B = k[T, ..., T,,] be the homogeneous coordinate ring of P}.
The map ¢ corresponds to the k-algebra homomorphism ¢: B — R, which sends each T;
to f;. Then the kernel of this homomorphism defines the closed image § of ¢. In other
words, after degree renormalization, k[fy,...,f,] = B/Ker(¢) is the homogeneous
coordinate ring of §. The minimal set of generators of Ker(¢) is called its implicit equations
and the implicitization problem is to find these implicit equations.

The implicitization problem for curves and surfaces has increasingly attracted the
interest of commutative algebraists and algebraic geometers due to its applications in
Computer Aided Geometric Design as explained by Cox [6].
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We blow up the base locus of ¢ and obtain the following commutative diagram

I Py x PP

m1 T2

The variety I' is the blow-up of P at B and it is also the Zariski closure of the graph of
¢ in P x P;. Moreover, I' is the geometric version of the Rees algebra R; of I, i.e.
Proj(R;) = I'. As R, is the graded domain defining I', the projection 7, (I") = § is defined
by the graded domain R; N k[T, ..., T;,] and we can thus obtain the implicit equations of
§ from the defining equations of R;.

In geometric modeling, it is of vital importance to have a detailed knowledge of the
geometry of the objects and of the parametric representations one is working with. The
question of how many times the same point is being painted (i.e. corresponds to distinct
values of parameter) depends not only on the variety itself, but also on the
parameterization. It is of interest to determine the singularities of the parameterizations,
in particular their fibers. More precisely, we set

mi=my il - Py

For every closed point y € Py, we will denote by k(y) its residue field. If k is assumed
to be algebraically closed, then k(y) = k. The fiber of  at y € P} is the subscheme

7~ 1(y) = Proj <RI % k(y)) c [P’L”(y) =~ P

Suppose that m > 2 and ¢ is generically finite onto its image. Then the set

Ym-1={y EPg Idimn~(y) =m -1}

consists of only a finite number of points in P}. Foreachy € Yp,_1, n7*(y) isa (m — 1)-
dimensional subcheme of P}* and thus the unmixed component of maximal dimension
is defined by a homogeneous polynomial h,, € R. In recent papers [4, 9], the authors
have established some bounds for Y,y deg (hy) in terms of the degree d. In this
paper, we construct explicit examples of rational maps ¢: P > P; whose fibers attain
the maximal number of one-dimensional components permitted by known bounds. Our
construction not only provides concrete cases where the upper bound 2d — 2 is achieved,
but also establishes the sharpness of previous estimates in the literature.
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2. FIBERS OF A RATIONAL MAP ¢: P! > Py
For simplicity, we summarize the following data.

Data 2.1. Let k be an algebraically closed field and letn > m =2 and d > 1. Let I be
minimally generated by homogeneous polynomials f:= f, ..., f,, of degree d, in
R:=k[X] = k[X,, ..., Xim] satisfying gcd(fo, ..., f) = 1. Suppose that f define a rational
map ¢: P™ -» P" that is generically finite onto its image.

In [4], the authors have generalized a result in [1] which gives the structure of the
unmixed part of a (m — 1)-dimensional fiber of 7. Recall that the saturation of an ideal J
of R is defined by J%2': = J:p (X)*® and the initial degree of a graded R-module M by

indeg(M) : = inf{n € Z: M,, # 0}
with the convention that sup® = +oo.
Lemma 2.2. [4] Assume Data 2.1 holds. Let y = (po: -+ : DPn) € Ym—1 satisfying p; = 1. Then,
hy = ged(fo — pofis s fo — Pufi) and I = () + hy (9o, ) 9i-1, Git1, +» Gn),
where f; — p;fi = hygj for all j # i. Moreover, 53t (fl-, hy).
The following theorem is a generalization of [9, Proposition 1].

Theorem 2.3. Assume Data 2.1 holds. If there exists an integer s such that v =
indeg((I5)%®") < sd, then ¥yey, _, deg(hy,) < v < sd.

Proof. The proof of this result goes along the same lines as in the proof of Propositiog
1 in [9], using Lemma 2.2.

In particular, Theorem 2.3 shows that
> deg(hy) <d,
YE€Ym-1

whenever indeg(I52%) < d. The delicate case is when the ideal I satisfies indeg(/52%) = d.
M. Chardin, S.D. Cutkosky and the second author have proved the following for the
parameterizations of surfaces ¢: Pz > P3.

Theorem 2.4. [4, 9] Assume Data 2.1 holds. Assume further thatm =n —1 = 2 and
indeg(153) = d.

(i) If B =Proj(R/I) is locally a complete intersection, then

Z deg(hy) <

{4 if d=3,
V€Y1

ddl'fd>4
-t v aes
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(ii) If the characteristic of k does not divide d and [k(f): k(X)] is separable, then
Z deg (hy) <3(d—-1)— indeg(Syz(I)) <3(d-1).
YE€U1

Recall that if f : = fj, ..., f, are polynomials in R = k[X, ..., X;,], then the Jacobian matrix
of f is defined by

O . 9
X, 0Xm
JO =1 : )
Ofn Ofn
P axm}

Let IS(] (f)) denote the ideal of R generated by the s-minors of j(f). M. Chardin, S.D.
Cutkosky and the second author have generalized the above theorem.

Theorem 2.5. [4] Assume Data 2.1 holds. Assume further that I3 (](f)) # 0. Let F be the
greatest common divisor of generators of I3(J (). Then

Ty
Z deg (hy) < Z Z(Zei — 1) deg(h;) < deg(F) <3(d—1),
YE€Ym-1 YEYm-1 i=1

_ pei .. ery . . . T .
where h,, = hy hry is an irreducible factorization of h,, in R.

If the field k is of characteristic zero, then the assumptions 13(](f)) # 0 and the
separability of [k(f):k(X)] are always satisfied, due to the hypothesis that ¢ is
generically finite onto its image.

Remark 2.6.
(i) The inequality

Ty
Z deg (hy) < Z Z(Zei — 1) deg(h;)
Y€Ym-1 YE€EYm-1 i=1

becomes an equality if and only if the defining equation of the unmixed
component of the fiber 7~ (y) has no multiple factors, for every y € Yp,,_;.

(ii) The bound

DD @i~ 1) deg(hy) < deg(F)
YE€Ym-1 i=1

is optimal as the following example shows.

In the case of parameterization ¢: P% ~> P3 of algebraic rational surfaces. Such a map ¢
is defined by four homogeneous polynomials fj, ..., f3, not all zero, of the same degree d,
in the standard graded polynomial ring R = k[x,y, z]. Our goal is to establish a bound

4
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for the cardinality of the set of points in P} with a one-dimensional fiber, that is, the

cardinality of the set
Y ={y € P | dimr™'(y) = 1}.
The following corollary is a direct consequence of Theorem 2.4.

Corollary 2.7. Assume Data 2.1 holds. Assume further thatm = n — 1 = 2 and indeg(I5?") =
d.

(i) IfB = Proj(R/I) is locally a complete intersection, then

4 if d=3,
<{d
#Y —{qu it d>4

(ii) If the characteristic of k does not divide d and [k(f): k(x,y,z)] is separable, then
#Y; < 3(d — 1) — indeg(Syz(I))} < 3(d — 1).

Example 2.8. [9, Example 10] Let d > 4 be an integer. Consider the parameterization
given by f = f, ..., f3, with

fo=X43X,(X¢ - XD), fo = X§3X,(X2 — X2),
fr = X§3X,(XE — X7, fz = X{3X,(X2 - XD).

By using Macaulay?2 [8], we get the greatest common divisor of generators of I5(J(f)) to
be

F = X347X,(X5 — XB)(XE — X3).

It is known from [9, Example 10] that

> deg(hy)=d+2

Y€Us
and
Ty
Z Z(Zei — 1) deg(hy) = 2(d — 1) = deg(F) < 3(d — 1).
Y€y, i=1
Furthermore, if d = 4, then
Ty
Z deg(hy) = Z Z(Zei — 1) deg(h;) = deg(F).
€Yy yeY; i=1
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3. MAIN RESULTS

An interesting question is: could the number of points in P} having a fiber of dimension
one of a rational map ¢: P; -» P} be arbitrarily big? We now construct parameterizations
that exhibit a large number of one-dimensional fibers.

Example 3.1. Let k be a field of characteristic zero and d > 3 be an integer. Let
Ay, v, Qg2, b1, ..., bg_5 € k™ = k\{0} such that a; # a; and b; # b; for all i # j. Set

a-2 a-2
f=]]e-an anda g=]]o-b2
i=1 i=1

two homogeneous polynomials of degree d — 2. Consider the matrix

-z 0 g
(0 -z —f
“ly o0 o

0 x 0

And let f; be (—1)’** times the minor obtained from M by leaving out the (j + 1)-th row,
forallj =0,...,3. Let I = (fy, f1, f2, f3) be the ideal of R = k[x, y, z]. Then, I is a saturated
ideal of codimension two. By the Hilbert-Burch theorem, I admits a minimal free
resolution of the form

0— R(—d —1)>® R(—2d + 2) > R(—d)* R R/I 0

Note that fy = xyf, fi = xyg, f» = xzf and f; = yzg. It follows that f: = f,, ..., f3 are k-
linearly independent. Since gcd(f,g) =1, one has gcd(fy,...,f,) =1. Thus, B =
Proj(R/I) is a zero-dimensional subscheme of P%. Using the vanishing theorems for the
sheaf cohomology, one obtain

deg(B) = dim(R/1),
for u > 0. Since dimy R, = (”;2), the above resolution for R/I shows that
deg(B) = %(d2 +(d—-2)2+2)=d*-2d +3.
This formula has been proven in [5]. Moreover, it is straightforward to verify that
B ={(1,0,0),(0,1,0),(0,0,1), (a;,0,1),(0,b;, 1), (a;, b;, 1) i =1, ...,d — 2}.
Therefore, d,, = 1 for all p € B. It follows that B is locally a complete intersection.

Consider the parameterization ¢: Pz > P; defined by f = f;, f;, f5, f3 and let S be the
Zariski closure of its image.

Let Ly, L, L3 be a R-basis of the syzygy module of I. Write
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L1 = sz - Toz

LZ = T3x - T]_Z

Ly =Tog—Tif

_ 0 T2 _TO
and N = (T3 0 -,

maximal minor of N, that is

). We see that ¢ has a rational inverse ¥ given by the (signed)

P S P2
(To:++:T3) > (T1T5:ToT5: T2 T3),
see, for example, [3], thus deg(¢) = 1. By the degree formula [5], the image S of ¢ is
a surface in P; of degree

deg(s) = d? — Z e, (1) = d? — deg(B) = 2d — 3,
X€B
where e, (I) is the Hilbert-Samuel multiplicity, as defined in [2]. The equality holds
since [ is locally a compete intersection. Consequently, the set of one-dimensional
fibers is

Yi=Par,qli=1..,d-2}
where
p=1(0:0:0:1) h,=x,
qg=1(0:0:1:0) h
p; = (0:a;:0:1) hy,=x—-az Vi=1,..,d-2,
q;=(b:0:1:0) hy,=y—bz Vi=1,..,d-2.

k=}

- )

E=

Therefore, #Y; = 2(d — 1). It follows that indeg((I?)52%) > 2(d — 1).
The following theorem shows that the inequality in Theorem 2.3 is optimal.
Theorem 3.2. It holds that xyfg € (1*)%". Therefore, indeg((1?)%?") = 2(d — 1).
Proof. Set m = (x,, z). It suffices to show that m%~1xyfg c I%.
Since x2y2fg,x%yzfg,xy?zfg,xyz*fg € I?, the claim will be completed by showing
that x4yfg,xy%fg € I.
Let us write
x%yfg = Af§ + Bfof + Cfif, = Ax*y?f? + Bx*yzf? + Cx*yzf g,
which deduces

Ay+Bz=g

x%2g = Ayf + Bzf + Czg = (Ay + Bz)f + Czg = {CZ -

Since

Ay + Bz =g =17y — biz) = (IE2 @ — b))y — (ba—z [ (v — bi2))z.



Examples on fibers of rational maps

We choose 4 = [[43(y — b;z) and B = —by_, [142(y — b;z). Since
d-2
x372 — f = x972 — H(x —a;2) = (06,2473 —0,x% 4z + -+ (=1)%0,_,297%)z,
i=1
where 0y,..,04_, are the elementary symmetric polynomials in d —2 variables
@y, ...,aq_. Thus, we choose C = g;x%73 — g,x% %z + -+ + (—=1)%1g,4_,2%73. This shows
that x*yfg € (7, fof2, fif2) € I%.

Similarly, we can prove that xy®fg € (f?2, fofs fifs) © I?. Hence, we conclude that
indeg((I?)5a") = 2(d — 1) which shows that the bound given in Theorem 2.3 is sharp.
This completes the proof. m]
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NHUNG Vi DU VE ANH NGUQC CUA ANH XA HUU Ti

TOM TAT

H6 Vii Ngoc Phwong!” Tran Quang Ho4?
IKhoa Toan, Truong Pai hoc Khoa hoc, Pai hoc Hué
?Khoa Toan, Truong Dai hoc Sw pham, Dai hoc Hué

*Email: hvnphuong@husc.edu.vn

Mot anh xa hitu ti ¢: Pm -+ > Pn duoc dinh nghia boi n + 1 da thitc thuan nhét ¢

chung bac d. Trong hai bai bao [4, 9], cac téc gia da thiét lap mét vai chan theo d s6

ctia cac anh ngugc chiéu m - 1 ctia ¢. Mot cadu hoi thi vi dat ra la: liéu ¢6 ton tai dnh

xa httu ti ¢: P2 --- > P3 sao cho n6 ¢6 s0 luwong 16n cac diém trong P? ¢ anh nguoc 1-

chiéu hay khong. Trong bai bdo nay, chiing toi chitng minh rang s8 anh nguoc mot

chiéu c6 thé dat dén can 2d — 2, qua dé khéng dinh tinh sic sdo (chat) cua cac wéc

luong da biét trudce do.
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