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ABSTRACT 

A rational map 𝜙: ℙ௞
௠ ⇢ ℙ௞

௡ is defined by homogeneous polynomials of a common 
degree 𝑑. In [4, 9], the authors have established some bounds in terms of 𝑑 for the 
number of (𝑚 − 1)-dimensional fibers of 𝜙. An interesting question is whether the 
number of points in ℙ௞

ଷ  with one-dimensional fibers under a rational map 𝜙: ℙ௞
ଶ ⇢

ℙ௞
ଷ  can be arbitrarily large.  In this paper, we show that the number of one-

dimensional fibers can reach the bound 2𝑑 − 2, thereby proving the sharpness of 
previously known estimates. 

Keywords: fibers of rational maps, parameterizations. 

 

1. INTRODUCTION 

Let 𝑘 be a field and 𝜙: ℙ௞
௠ ⇢ ℙ௞

௡ be a rational map. Such a map 𝜙 is defined by 
homogeneous polynomials 𝑓଴, … , 𝑓௡ of the same degree 𝑑 in the standard graded 
polynomial ring 𝑅 = 𝑘[𝑋଴, … , 𝑋௠], satisfying gcd(𝑓଴, … , 𝑓௡) = 1. The ideal 𝐼 of 𝑅 generated 
by these polynomials is called the base ideal of 𝜙. The subscheme ℬ : = Proj(𝑅/𝐼) ⊂ ℙ௞

௠ is 
called the base locus of 𝜙. Let 𝐵 = 𝑘[𝑇଴, … , 𝑇௡] be the homogeneous coordinate ring of ℙ௞

௡. 
The map 𝜙 corresponds to the 𝑘-algebra homomorphism 𝜑: 𝐵 → 𝑅, which sends each 𝑇௜ 
to 𝑓௜. Then the kernel of this homomorphism defines the closed image 𝒮 of 𝜙. In other 
words, after degree renormalization, 𝑘[𝑓଴, … , 𝑓௡] ≃ 𝐵/Ker(𝜑) is the homogeneous 
coordinate ring of 𝒮. The minimal set of generators of Ker(𝜑) is called its implicit equations 
and the implicitization problem is to find these implicit equations. 

The implicitization problem for curves and surfaces has increasingly attracted the 
interest of commutative algebraists and algebraic geometers due to its applications in 
Computer Aided Geometric Design as explained by Cox [6]. 
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We blow up the base locus of 𝜙 and obtain the following commutative diagram 

 

The variety 𝛤 is the blow-up of ℙ௞
௠ at ℬ and it is also the Zariski closure of the graph of 

𝜙 in ℙ௞
௠ × ℙ௞

௡. Moreover, 𝛤 is the geometric version of the Rees algebra ℛ୍ of 𝐼, i.e. 
Proj(ℛ୍) = 𝛤. As ℛ୍ is the graded domain defining 𝛤, the projection 𝜋ଶ(𝛤) = 𝒮 is defined 
by the graded domain ℛ୍ ∩ 𝑘[𝑇଴, … , 𝑇௡] and we can thus obtain the implicit equations of 
𝒮 from the defining equations of ℛ୍. 

In geometric modeling, it is of vital importance to have a detailed knowledge of the 
geometry of the objects and of the parametric representations one is working with. The 
question of how many times the same point is being painted (i.e. corresponds to distinct 
values of parameter) depends not only on the variety itself, but also on the 
parameterization. It is of interest to determine the singularities of the parameterizations, 
in particular their fibers. More precisely, we set 

𝜋 : = 𝜋ଶ∣௰: 𝛤 → ℙ௞
௡. 

For every closed point 𝑦 ∈ ℙ௞
௡, we will denote by 𝑘(𝑦) its residue field.  If 𝑘 is assumed 

to be algebraically closed, then 𝑘(𝑦) ≃ 𝑘. The fiber of 𝜋 at 𝑦 ∈ ℙ௞
௡ is the subscheme 

𝜋ିଵ(𝑦) = Proj ቆℛ୍ ⊗
஻

𝑘(𝑦)ቇ ⊂ ℙ௞(௬)
௠ ≃ ℙ௞

௠. 

Suppose that 𝑚 ≥ 2 and 𝜙 is generically finite onto its image. Then the set 

𝒴௠ିଵ = {𝑦 ∈ ℙ௞
௡ ∣ dim 𝜋ିଵ(𝑦) = 𝑚 − 1} 

consists of only a finite number of points in ℙ௞
௡.  For each 𝑦 ∈ 𝒴௠ିଵ,  𝜋ିଵ(𝑦) is a (𝑚 − 1)-

dimensional subcheme of ℙ௞
௠ and thus the unmixed component of maximal dimension 

is defined by a homogeneous polynomial ℎ௬ ∈ 𝑅.  In recent papers [4, 9], the authors 
have established some bounds for ∑ deg௬∈𝒴೘షభ

൫ℎ௬൯ in terms of the degree 𝑑. In this 
paper, we construct explicit examples of rational maps 𝜙: ℙ௞

ଶ ⇢ ℙ௞
ଷ  whose fibers attain 

the maximal number of one-dimensional components permitted by known bounds. Our 
construction not only provides concrete cases where the upper bound 2𝑑 − 2 is achieved, 
but also establishes the sharpness of previous estimates in the literature.  
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2. FIBERS OF A RATIONAL MAP 𝝓: ℙ𝒌
𝒎 ⇢ ℙ𝒌

𝒏  

For simplicity, we summarize the following data. 

Data 2.1. Let 𝑘 be an algebraically closed field and let 𝑛 ≥ 𝑚 ≥ 2 and 𝑑 ≥ 1. Let 𝐼 be 
minimally generated by homogeneous polynomials 𝐟 : = 𝑓଴, … , 𝑓௡, of degree 𝑑, in 
R: = 𝑘[𝐗] = 𝑘[𝑋଴, … , 𝑋௠] satisfying gcd(𝑓଴, … , 𝑓௡) = 1. Suppose that 𝐟 define a rational 
map 𝜙: ℙ௠ ⇢ ℙ௡ that is generically finite onto its image. 

In [4], the authors have generalized a result in [1] which gives the structure of the 
unmixed part of a (𝑚 − 1)-dimensional fiber of 𝜋. Recall that the saturation of an ideal 𝐽 
of 𝑅 is defined by 𝐽ୱୟ୲ : = 𝐽:ோ (𝐗)ஶ and the initial degree of a graded 𝑅-module 𝑀 by 

indeg(𝑀) : = inf{𝑛 ∈ ℤ: 𝑀௡ ≠ 0} 

with the convention that sup∅ = +∞. 

Lemma 2.2. [4] Assume Data 2.1 holds. Let 𝑦 = (𝑝଴: ⋯ : 𝑝௡) ∈ 𝒴௠ିଵ satisfying 𝑝௜ = 1. Then,  

ℎ௬ = gcd(𝑓଴ − 𝑝଴𝑓௜, … , 𝑓௡ − 𝑝௡𝑓௜) and 𝐼 = (𝑓௜) + ℎ௬(𝑔଴, … , 𝑔௜ିଵ, 𝑔௜ାଵ, … , 𝑔௡), 

where 𝑓௝ − 𝑝௝𝑓௜ = ℎ௬𝑔௝ for all 𝑗 ≠ 𝑖. Moreover, 𝐼ୱୟ୲ ⊂ ൫𝑓௜, ℎ௬൯. 

The following theorem is a generalization of [9, Proposition 1]. 

Theorem 2.3. Assume Data 2.1 holds. If there exists an integer 𝑠 such that 𝜈 =

indeg((𝐼௦)ୱୟ୲) < 𝑠𝑑, then ∑ deg௬∈𝒴೘షభ
൫ℎ௬൯ ≤ 𝜈 < 𝑠𝑑. 

Proof. The proof of this result goes along the same lines as in the proof of Proposition 
1 in [9], using Lemma 2.2.     

In particular, Theorem 2.3 shows that 

෍ deg

௬∈𝒴೘షభ

൫ℎ௬൯ < 𝑑, 

whenever indeg(𝐼ୱୟ୲) < 𝑑. The delicate case is when the ideal 𝐼 satisfies indeg(𝐼ୱୟ୲) = 𝑑. 
M. Chardin, S.D. Cutkosky and the second author have proved the following for the 
parameterizations of surfaces 𝜙: ℙ௞

ଶ ⇢ ℙ௞
ଷ. 

Theorem 2.4. [4, 9] Assume Data 2.1 holds.  Assume further that 𝑚 = 𝑛 − 1 = 2 and 
indeg(𝐼ୱୟ୲) = 𝑑. 

(i) If  ℬ = Proj(𝑅/𝐼) is locally a complete intersection, then  

෍ deg

௬∈𝒴భ

൫ℎ௬൯ ≤ ൝

4 if 𝑑 = 3,

ඌ
𝑑

2
ඐ 𝑑 − 1 if 𝑑 ≥ 4.
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(ii) If the characteristic of 𝑘 does not divide 𝑑 and [𝑘(𝐟): 𝑘(𝐗)] is separable, then  

෍ deg

௬∈𝒴భ

൫ℎ௬൯ ≤ 3(𝑑 − 1) − indeg൫Syz(𝐼)൯ < 3(𝑑 − 1). 

Recall that if 𝐟 : = 𝑓଴, … , 𝑓௡ are polynomials in 𝑅 = 𝑘[𝑋଴, … , 𝑋௠], then the Jacobian matrix 
of 𝐟 is defined by 

𝐽(𝐟) =

⎝

⎜⎜
⎛

∂𝑓଴

∂𝑋଴
⋯

∂𝑓଴

∂𝑋௠

⋮ ⋮
∂𝑓௡

∂𝑋଴
⋯

∂𝑓௡

∂𝑋௠⎠

⎟⎟
⎞

. 

Let 𝐼௦൫𝐽(𝐟)൯ denote the ideal of 𝑅 generated by the 𝑠-minors of 𝐽(𝐟). M. Chardin, S.D. 
Cutkosky and the second author have generalized the above theorem. 

Theorem 2.5. [4] Assume Data 2.1 holds. Assume further that 𝐼ଷ൫𝐽(𝐟)൯ ≠ 0. Let 𝐹 be the 
greatest common divisor of generators of 𝐼ଷ൫𝐽(𝐟)൯. Then 

෍ deg

௬∈𝒴೘షభ

൫ℎ௬൯ ≤ ෍ ෍(2𝑒௜ − 1)

௥೤

௜ୀଵ௬∈𝒴೘షభ

deg(ℎ௜) ≤ deg(𝐹) ≤ 3(𝑑 − 1), 

where ℎ௬  =  ℎଵ
௘భ ⋯ ℎ௥೤

௘ೝ೤  is an irreducible factorization of ℎ௬ in 𝑅. 

If the field 𝑘 is of characteristic zero, then the assumptions 𝐼ଷ൫𝐽(𝐟)൯ ≠ 0 and the 
separability of [𝑘(𝐟): 𝑘(𝐗)] are always satisfied, due to the hypothesis that 𝜙 is 
generically finite onto its image. 

Remark 2.6. 

(i) The inequality 

෍ deg

௬∈𝒴೘షభ

൫ℎ௬൯ ≤ ෍ ෍(2𝑒௜ − 1)

௥೤

௜ୀଵ௬∈𝒴೘షభ

deg(ℎ௜) 

  becomes an equality if and only if the defining equation of the unmixed 
component of the fiber 𝜋ିଵ(𝑦) has no multiple factors, for every 𝑦 ∈ 𝒴௠ିଵ. 

(ii) The bound 

෍ ෍(2𝑒௜ − 1)

௥೤

௜ୀଵ௬∈𝒴೘షభ

deg(ℎ௜) ≤ deg(𝐹) 

  is optimal as the following example shows. 

In the case of parameterization 𝜙: ℙ௞
ଶ ⇢ ℙ௞

ଷ  of algebraic rational surfaces. Such a map 𝜙 
is defined by four homogeneous polynomials 𝑓଴, … , 𝑓ଷ, not all zero, of the same degree 𝑑, 
in the standard graded polynomial ring 𝑅 = 𝑘[𝑥, 𝑦, 𝑧]. Our goal is to establish a bound 
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for the cardinality of the set of points in ℙ௞
ଷ with a one-dimensional fiber, that is, the 

cardinality of the set 

𝒴ଵ = {𝑦 ∈ ℙ௞
ଷ   ∣  dim𝜋ିଵ(𝑦) = 1}. 

The following corollary is a direct consequence of Theorem 2.4. 

Corollary 2.7. Assume Data 2.1 holds. Assume further that 𝑚 = 𝑛 − 1 = 2 and indeg(𝐼ୱୟ୲) =

 𝑑. 

(i) If ℬ = Proj(𝑅/𝐼) is locally a complete intersection, then  

#𝒴ଵ ≤ ൝

4 if 𝑑 = 3,

ඌ
𝑑

2
ඐ 𝑑 − 1 if 𝑑 ≥ 4.

 

(ii) If the characteristic of 𝑘 does not divide 𝑑 and [𝑘(𝐟): 𝑘(𝑥, 𝑦, 𝑧)] is separable, then  

#𝒴ଵ ≤ 3(𝑑 − 1) − indeg൫Syz(𝐼)൯} < 3(𝑑 − 1). 

Example 2.8. [9, Example 10] Let 𝑑 ≥ 4 be an integer. Consider the parameterization 
given by 𝐟 = 𝑓଴, … , 𝑓ଷ, with 

𝑓଴ = 𝑋଴
ௗିଷ𝑋ଵ(𝑋଴

ଶ − 𝑋ଵ
ଶ), 𝑓ଶ = 𝑋଴

ௗିଷ𝑋ଶ(𝑋ଵ
ଶ − 𝑋ଶ

ଶ),

𝑓ଵ = 𝑋଴
ௗିଷ𝑋ଶ(𝑋଴

ଶ − 𝑋ଵ
ଶ), 𝑓ଷ = 𝑋ଵ

ௗିଷ𝑋ଶ(𝑋ଵ
ଶ − 𝑋ଶ

ଶ).
 

By using Macaulay2 [8], we get the greatest common divisor of generators of 𝐼ଷ൫𝐽(𝐟)൯ to 
be 

𝐹 = 𝑋଴
ଶௗି଻𝑋ଶ(𝑋଴

ଶ − 𝑋ଵ
ଶ)(𝑋ଵ

ଶ − 𝑋ଶ
ଶ). 

It is known from [9, Example 10] that 

෍ deg

௬∈𝒴భ

൫ℎ௬൯ = 𝑑 + 2 

and 

෍ ෍(2𝑒௜ − 1)

௥೤

௜ୀଵ௬∈𝒴భ

deg(ℎ௜) = 2(𝑑 − 1) = deg(𝐹) < 3(𝑑 − 1). 

Furthermore, if 𝑑 = 4, then 

෍ deg

௬∈𝒴భ

൫ℎ௬൯ = ෍ ෍(2𝑒௜ − 1)

௥೤

௜ୀଵ௬∈𝒴భ

deg(ℎ௜) = deg(𝐹). 
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3. MAIN RESULTS 

An interesting question is: could the number of points in ℙ௞
ଷ having a fiber of dimension 

one of a rational map 𝜙: ℙ௞
ଶ ⇢ ℙ௞

ଷ  be arbitrarily big? We now construct parameterizations 
that exhibit a large number of one-dimensional fibers. 

Example 3.1.  Let 𝑘 be a field of characteristic zero and 𝑑 ≥ 3 be an integer. Let 
𝑎ଵ, … , 𝑎ௗିଶ, 𝑏ଵ, … , 𝑏ௗିଶ ∈ 𝑘∗ = 𝑘\{0} such that 𝑎௜ ≠ 𝑎௝ and 𝑏௜ ≠ 𝑏௝ for all 𝑖 ≠ 𝑗. Set 

𝑓 = ෑ(𝑥 − 𝑎௜𝑧)

ௗିଶ

௜ୀଵ

 and 𝑔 = ෑ(𝑦 − 𝑏௜𝑧)

ௗିଶ

௜ୀଵ

 

two homogeneous polynomials of degree 𝑑 − 2. Consider the matrix 

𝑀 = ൮

−𝑧 0 𝑔
0 −𝑧 −𝑓
𝑦 0 0
0 𝑥 0

൲ 

And let 𝑓௝ be (−1)௝ାଵ times the minor obtained from 𝑀 by leaving out the (𝑗 + 1)-th row, 
for all 𝑗 = 0, … ,3. Let 𝐼 = (𝑓଴, 𝑓ଵ, 𝑓ଶ, 𝑓ଷ) be the ideal of 𝑅 = 𝑘[𝑥, 𝑦, 𝑧]. Then, 𝐼 is a saturated 
ideal of codimension two. By the Hilbert-Burch theorem, 𝐼 admits a minimal free 
resolution of the form 

 

Note that 𝑓଴ = 𝑥𝑦𝑓, 𝑓ଵ = 𝑥𝑦𝑔, 𝑓ଶ = 𝑥𝑧𝑓 and 𝑓ଷ = 𝑦𝑧𝑔. It follows that 𝐟 : = 𝑓଴, … , 𝑓ଷ are 𝑘-
linearly independent. Since gcd(𝑓, 𝑔) = 1, one has gcd(𝑓଴, … , 𝑓௡) = 1. Thus, ℬ =

Proj(𝑅/𝐼) is a zero-dimensional subscheme of ℙ௞
ଶ. Using the vanishing theorems for the 

sheaf cohomology, one obtain 

deg(ℬ) = dim௞(𝑅/𝐼)ఓ 

for 𝜇 ≫ 0. Since dim௞𝑅ఓ = ൫ఓାଶ
ଶ ൯, the above resolution for 𝑅/𝐼 shows that 

deg(ℬ) =
1

2
(𝑑ଶ + (𝑑 − 2)ଶ + 2) = 𝑑ଶ − 2𝑑 + 3. 

This formula has been proven in [5].  Moreover, it is straightforward to verify that 

ℬ = {(1,0,0), (0,1,0), (0,0,1), (𝑎௜ , 0,1), (0, 𝑏௜ , 1), (𝑎௜ , 𝑏௜, 1) ∣ 𝑖 = 1, … , 𝑑 − 2}. 

Therefore, 𝑑𝔭 = 1 for all 𝔭 ∈ ℬ. It follows that ℬ is locally a complete intersection. 

Consider the parameterization 𝜙: ℙ௞
ଶ ⇢ ℙ௞

ଷ  defined by 𝐟 = 𝑓଴, 𝑓ଵ, 𝑓ଶ, 𝑓ଷ and let 𝑆 be the 
Zariski closure of its image. 

Let 𝐿ଵ, 𝐿ଶ, 𝐿ଷ be a 𝑅-basis of the syzygy module of 𝐼. Write 
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𝐿ଵ = 𝑇ଶ𝑦 − 𝑇଴𝑧
𝐿ଶ = 𝑇ଷ𝑥 − 𝑇ଵ𝑧
𝐿ଷ = 𝑇଴𝑔 − 𝑇ଵ𝑓

 

and 𝑁 = ൬
0 𝑇ଶ −𝑇଴

𝑇ଷ 0 −𝑇ଵ
൰. We see that 𝜙 has a rational inverse 𝜓 given by the (signed) 

maximal minor of 𝑁, that is 

𝜓:  𝑆 ⇢ ℙ௞
ଶ

(𝑇଴: ⋯ : 𝑇ଷ) ↦ (𝑇ଵ𝑇ଶ: 𝑇଴𝑇ଷ: 𝑇ଶ𝑇ଷ),
 

see, for example, [3], thus deg(ϕ) = 1. By the degree formula [5], the image 𝑆 of 𝜙 is 
a surface in ℙ௞

ଷ  of degree 

deg(𝑆) = 𝑑ଶ − ෍ 𝑒௫

௫∈ℬ

(𝐼) = 𝑑ଶ − deg(ℬ) = 2𝑑 − 3, 

where 𝑒௫(𝐼) is the Hilbert-Samuel multiplicity, as defined in [2]. The equality holds 
since 𝐼 is locally a compete intersection. Consequently, the set of one-dimensional 
fibers is 

𝒴ଵ = {𝔭, 𝔮, 𝔭௜ , 𝔮௜ ∣ 𝑖 = 1, … , 𝑑 − 2}, 

where 

𝔭 = (0: 0: 0: 1) ℎ𝔭 = 𝑥,

𝔮 = (0: 0: 1: 0) ℎ𝔮 = 𝑦,

𝔭௜ = (0: 𝑎௜: 0: 1) ℎ𝔭೔
= 𝑥 − 𝑎௜𝑧 ∀𝑖 = 1, … , 𝑑 − 2,

𝔮௜ = (𝑏௜: 0: 1: 0) ℎ𝔮೔
= 𝑦 − 𝑏௜𝑧 ∀𝑖 = 1, … , 𝑑 − 2.

 

Therefore, #𝒴ଵ = 2(𝑑 − 1). It follows that indeg((𝐼ଶ)ୱୟ୲) ≥ 2(𝑑 − 1). 

The following theorem shows that the inequality in Theorem 2.3 is optimal. 

Theorem 3.2.  It holds that 𝑥𝑦𝑓𝑔 ∈ (𝐼ଶ)ୱୟ୲. Therefore, indeg((𝐼ଶ)ୱୟ୲) = 2(𝑑 − 1). 

Proof. Set 𝔪 = (𝑥, 𝑦, 𝑧). It suffices to show that 𝔪ௗିଵ𝑥𝑦𝑓𝑔 ⊂ 𝐼ଶ. 

Since 𝑥ଶ𝑦ଶ𝑓𝑔, 𝑥ଶ𝑦𝑧𝑓𝑔, 𝑥𝑦ଶ𝑧𝑓𝑔, 𝑥𝑦𝑧ଶ𝑓𝑔 ∈ 𝐼ଶ, the claim will be completed by showing 
that 𝑥ௗ𝑦𝑓𝑔, 𝑥𝑦ௗ𝑓𝑔 ∈ 𝐼ଶ. 

Let us write 

𝑥ௗ𝑦𝑓𝑔 = 𝐴𝑓଴
ଶ + 𝐵𝑓଴𝑓ଶ + 𝐶𝑓ଵ𝑓ଶ = 𝐴𝑥ଶ𝑦ଶ𝑓ଶ + 𝐵𝑥ଶ𝑦𝑧𝑓ଶ + 𝐶𝑥ଶ𝑦𝑧𝑓𝑔, 

which deduces 

𝑥ௗିଶ𝑔 = 𝐴𝑦𝑓 + 𝐵𝑧𝑓 + 𝐶𝑧𝑔 = (𝐴𝑦 + 𝐵𝑧)𝑓 + 𝐶𝑧𝑔 ⇒ ൜
𝐴𝑦 + 𝐵𝑧 = 𝑔

𝐶𝑧 = 𝑥ௗିଶ − 𝑓.
 

Since  

𝐴𝑦 + 𝐵𝑧 = 𝑔 = ∏ (𝑦 − 𝑏௜𝑧)ௗିଶ
௜ୀଵ = (∏ (𝑦 − 𝑏௜𝑧)ௗିଷ

௜ୀଵ )𝑦 − (𝑏ௗିଶ ∏ (𝑦 − 𝑏௜𝑧)ௗିଷ
௜ୀଵ )𝑧.  
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We choose 𝐴 = ∏ (𝑦 − 𝑏௜𝑧)ௗିଷ
௜ୀଵ  and 𝐵 = −𝑏ௗିଶ ∏ (𝑦 − 𝑏௜𝑧)ௗିଷ

௜ୀଵ . Since 

𝑥ௗିଶ − 𝑓 = 𝑥ௗିଶ − ෑ(𝑥 − 𝑎௜𝑧)

ௗିଶ

௜ୀଵ

= (𝜎ଵ𝑥ௗିଷ − 𝜎ଶ𝑥ௗିସ𝑧 + ⋯ + (−1)ௗିଵ𝜎ௗିଶ𝑧ௗିଷ)𝑧, 

where 𝜎ଵ, … , 𝜎ௗିଶ are the elementary symmetric polynomials in 𝑑 − 2 variables 
𝑎ଵ, … , 𝑎ௗିଶ. Thus, we choose 𝐶 = 𝜎ଵ𝑥ௗିଷ − 𝜎ଶ𝑥ௗିସ𝑧 + ⋯ + (−1)ௗିଵ𝜎ௗିଶ𝑧ௗିଷ. This shows 
that 𝑥ௗ𝑦𝑓𝑔 ∈ (𝑓଴

ଶ, 𝑓଴𝑓ଶ, 𝑓ଵ𝑓ଶ) ⊂ 𝐼ଶ. 

Similarly, we can prove that 𝑥𝑦ௗ𝑓𝑔 ∈ (𝑓ଵ
ଶ, 𝑓଴𝑓ଷ, 𝑓ଵ𝑓ଷ) ⊂ 𝐼ଶ. Hence, we conclude that 

indeg((𝐼ଶ)ୱୟ୲) = 2(𝑑 − 1) which shows that the bound given in Theorem 2.3 is sharp. 
This completes the proof.                                                                                                   ◻ 
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TÓM TẮT 

Một ánh xạ hữu tỉ 𝜙: 𝑃𝑚 ⋯ > 𝑃𝑛 được định nghĩa bởi 𝑛 + 1 đa thức thuần nhất có 
chung bậc 𝑑. Trong hai bài báo [4, 9], các tác giả đã thiết lập một vài chặn theo 𝑑 số 
của các ảnh ngược chiều 𝑚 − 1 của 𝜙. Một câu hỏi thú vị đặt ra là: liệu có tồn tại ánh 
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lượng đã biết trước đó. 
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